

Uplands Junior School

Uplands Junior School Calculation Policy 2020

CPA and Bar Model approach

Progression towards a standard written method of calculation

Uplands Junior Schoo

INTRODUCTION

This calculation policy has been written in line with the programmes of study taken from the revised National Curriculum for Mathematics (2014). It provides guidance on appropriate calculation methods and progression. The content is set out in yearly blocks under the following headings: addition, subtraction, multiplication and division. This policy supports the White Rose maths scheme used throughout the school.

AIMS OF THE POLICY

- To ensure consistency and progression in our approach to calculation
- To ensure that children can use methods accurately with confidence and understanding
- To ensure that children develop an efficient, reliable, formal written method of calculation for all operations

CPA APPROACH

Concrete, pictorial, abstract (CPA) concepts should not be confused as differentiation for lower, middle, higher attaining children. CPA is an approach to be used with the whole class and teachers should promote each area as equally valid. Manipulatives in particular must not be presented as a resource to support the less confident or lower attaining pupils.

Concrete representation - a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.
Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.
Abstract representation-a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$.

- Children need to use concrete resources before they progress to pictorial and abstract representations. This CPA (concrete, pictorial and abstract) approach needs to be available to children throughout school, as and when necessary. Use of manipulatives (numicon, base 10 apparatus/dienes, HTO counters etc.) helps reinforce understanding and provides support when calculating mentally, mentally with jottings, using expanded methods and formal written methods. Use of the bar model, number lines and part-part whole diagrams are recommended.
- Children should progress between the stages working towards formal written methods (where appropriate), once they have mastered each stage. However, they should not be hurried and, after the method has been taught, children should still be able to make their preferred choice of the most appropriate, efficient and accurate method for them. Previous stages may need to be revisited to consolidate understanding when introducing a new strategy.
- As new methods of calculations are introduced, children should have the opportunity to examine them, alongside the method they have consolidated, to make connections between the methods and establish the similarities and differences between them.

Place Value

- Identify, represent and estimate numbers using different representations.
- Read and write numbers in numerals and in words.
- Recognise the place value of each digit in numbers
https://www.youtube.com/watch? $\mathrm{v}=\mathrm{vBIZal}-8 \mathrm{Kr} 4$ https://www.youtube.com/watch?v=NNf4qXqTv7I

Place value counters/Double sided counters Place value charts

Drawings to represent base 10 Numbers written in digits

Writing numbers in words and numerals

ㅁㅁ
ㅁㅁ

Number lines

Part- whole model

- Find 10, 100, 1000 more or less than a given number.
https: //www.youtube.com/watch?v=gqUtjgrkYCU https://www.youtube.com/watch?v=a9j9JJ6LADY

- Compare and order numbers

Objective	Concrete Resources	Pictorial/Bar models	Abstract		
Pictorial and abstract representations should be used alongside the concrete at every step					
- Identify, represent and estimate numbers using different representations. - Recognise the place value of each digit in a four-digit number. Partition numbers. (thousands, hundreds, tens and ones)	Base 10 apparatus Place value counters Place value grids	Drawings to represent base 1 Part-whole model	Numbers written in digits Writing numbers in words and numerals $5,308=\square+\square+\square$		
- Order and compare numbers beyond 1000	Use resources as above	Use a mixture of concrete, pictorial and abstract - can children identify numbers? Can they compare and order between both?	Ordering numbers in digits only. Use of < and > symbols $6,000$ 3,981		
- Round any number to the nearest 10,100 or 1000	Starino Number Rounded to nearest 10 Startino Number Rounded to nearest 100 10 10 $\\|$ $\\|$ 10 200 777 780 649 600		Round given numbers in digits		

- Count in multiples of 6, 7, 9. 25 and 1000.
- Find 1000 more or less than a given number.
https://www.youtube.com/watch?v=bG1B5d5GMHM https://www.youtube.com/watch?v=XIIkwIfV_XQ

- Count backwards through zero to include negative numbers.

Pictorial and abstract representations should be used alongside the concrete at every step

- Read and write numbers to at least 1000000 and determine the value of each digit.	Base 10 apparatus - up to 10,000 only \square \square $\sigma_{a_{g}} a_{a}$ Place value counters Place value grids	Drawings to represent base 10 up to 10,000 only Part-whole model Bar model	Numbers written in digits Writing numbers in words and numerals \qquad $=50,000+8,000+790$
- Order and compare numbers to at least 1000000	As above	Use a mixture of concrete, pictorial and abstract - can children identify numbers? Can they compare and order between both?	Ordering numbers in digits only. Use of < and > symbols $\begin{array}{r} 4,000+10,000 \bigcirc 13,000 \\ 19,000+70+200 \bigcirc 19,270 \end{array}$

Objective	Concrete Resources	Pictorial/Bar models	Abstract
Pictorial and abstract representations should be used alongside the concrete at every step			
- Read and write numbers to at least 10,000,000 and determine the value of each digit.	Place value counters Place value grids	Part-whole model Bar model	Numbers written in digits Writing numbers in words and numerals $\begin{aligned} & =50,000+8,000+790 \\ & 103,531,052=100,000,000+ \\ & \frac{+}{1,000+\ldots}+2 \end{aligned}$
- Order and compare numbers to at least 10,000,000	As above	Use a mixture of concrete, pictorial and abstract - can children identify numbers? Can they compare and order between both?	Ordering numbers in digits only. Use of < and > symbols $\begin{array}{r} 4,000+10,000 \bigcirc 13,000 \\ 19,000+70+200 \bigcirc 19,270 \end{array}$

Addition and

Subtraction

Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.

Bar Modelling approach:

246	
78	166

$78+166=246$	$166+78=246$
$246-78=166$	$246-166=78$

413		
129	216	68

$£ 2.08+£ 1.84=£ 3.92$

$$
£ 6.49-£ 3.92=£ 2.57
$$

Missing numbers

or

Children explore relationships within addition and subtraction to help when solving inverse operation problems, and to check answers to column addition and subtraction questions. They also continue to use bar models to show addition of three numbers, and more complex subtraction. Children begin to use bar models to represent more complex word problems. They begin with recapping simple, one-step problems before moving onto two-step problems, using their model to decide which operation to use. Other concepts, such as money, should also be linked. They should become comfortable with explaining how the model represents the problem, and should be able to think of their own word problems based on a given bar model.

Year 3 Problems

- Show the bar model to represent $139+282$
- Show the bar model to represent 319-148
- Work out the missing answer in this bar model. Write down 4 number sentences that are shown by the model
- Jen takes 38 pens out of a packet. There were 100 to start with. How many are left in the packet?
- Bill has $£ 1.46$ on one piggy bank, $£ 2.39$ in another and $£ 1.27$ in a third. How much money does he have altogether? Show this on a bar model.
- Katie wants a new game that costs $£ 6.49$. Her mum gives her $£ 2.08$ and her dad gives her $£ 1.84$. How much more does she need? Show this on a bar model.
- There are 334 children at Springfield School and 75 at Holy Trinity Nursery. How many children are there altogether?
- Gemma collected 293 badges but she gave 45 of them to her friend, Rebecca. How many badges did she have left?
- Seven people each put five pens into a pot. Carmen then takes out fifteen pens. How many pens are left?
- If you spend 61p at the corner shop, how much change do you get from $£ 1.00$?

Year 4 Addition and Subtraction

Solve addition and subtraction two-step problems in context, deciding on which operation and method to use and why.

Bar Modelling approach

Continue as methods in Year 3 with numbers up to 4 digits.

5624			A postman needs to deliver 2370 letters.
1967	3657		
$\begin{aligned} 1967+3657 & =5624 \\ 5624-1967 & =3657 \end{aligned}$	$3657+1967=5624$		He delivers 618 on Monday, 863 on
	$5624-3657=1967$		
1578			many does he have l
613	729	236	to deliver?

2370			
618	863	809	$?$

The bar model should help children to see that they should add 618,863 and 809 . Once they have done this, the familiarity of the model will help them to see that they should take away the total from 2370 .

5000		
3711	767	$?$

4478

$$
3711+767=4478
$$

$$
5000-4478=522
$$

Missing numbers

Year 4 Problems

- Show the bar model to represent $2787+2009+1829$
- Show the bar model to represent 7262-2786
- Work out the missing answer in this bar model. Write down 4 number sentences that are shown by the model.
- There are 2,131 books in the library. Year 2 borrow 117 books and Year 3 borrow 89 books. How many books will be left when Year 4 arrive in the library?
- There are 3,711 people sat in a concert hall. 767 people have already left the concert. The hall can seat 5,000 people altogether. How many seats were empty for the concert?
- Martin has saved $£ 6.78$ and spends $£ 4.69$. How much does he have left?

Years 5 and 6 Addition and Subtraction

Year 6: Focus on application of abstract methods to solve problems - use of concrete and pictorial representations to support where needed. Extend to 6-digit numbers.

Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Bar Modelling approach:

Children move on to problems requiring them to calculate with more than 3 numbers. Bar modelling involving addition and subtraction in $\mathrm{Y} 5 / 6$ is likely to also require some modelling of multiplicative and divisive reasoning and fractions, decimals and percentages reasoning. Children begin to combine the 4 operations more within multi-step word problem, using bar models to structure their thoughts and decide on appropriate calculations.

228				
47	88	31	31	31

On Monday, Gita reads 47 pages of her book. She reads 88 pages the next day. If the book has 228 pages, and she splits the remaining pages between the next 3 days, how many pages does she read on these days?

$$
£ 6.20-£ 1.34=£ 4.86
$$

$$
£ 4.86 \div 2=£ 2.43
$$

Eg. Jon has $£ 1.34$ more than Liam.
Altogether, they have $£ 6.20$. How
much do they each have?

$$
\begin{aligned}
& 132-67=65 \\
& 65 \div 5=13
\end{aligned}
$$

Jess: 13
Tom: 26
Adam: 93

Year 5/6 Problems

- Sam has half the amount of money Lara has. Emma has twice as much as Lara. If they have $£ 1.61$ altogether, how much do they each have?
- Tom has twice as many colouring pencils as Jess, but 67 less than Adam. They have 132 altogether. How many do they each have? (see example above)
- Lara delivers a total of 567 letters. She delivered twice as many letters on Tuesday as she did on Monday. On Wednesday, she delivered 32 more than on Tuesday. How many did she deliver each day?
- Harry had $£ 137$ in his money box. He spent $£ 65$ on some computer games, and then shared what was left between himself and his 2 brothers. How much did each brother get?

